.RU

Совместное научно-производственное предприятие «Промэкс» Особенности построения и рекомендации по применению иутк «Гранит-микро». Часть Организация информационных обменов между пу и кп. Редакция 1, 2005 г








Совместное научно-производственное предприятие «Промэкс»


Особенности построения

и рекомендации по применению ИУТК «Гранит-микро».

Часть 1. Организация информационных обменов между ПУ и КП.

Редакция 1, 2005 г.


Научный руководитель СНПП «Промэкс»

к.т.н., доцент М.Л. Портнов


2005 г.
Содержание




Введение

3



Сопряжение устройств контролируемых пунктов (КП) с устройствами пункта

управления (ПУ) или центральной приемо-передающей станцией (ЦППС)

5



Организация информационных обменов в ИУТК «Гранит-микро»

9



Организация рабочих циклов в ИУТК «Гранит-микро»

15



Работа ИУТК «Гранит-микро» по физической (выделенной) ТЛС

23



Работа работы по уплотненной ТЛС

26



Работа по аналоговой радио ТЛС

28



Работа по цифровой радио ТЛС

30



Работа по мобильной (цифровой) радио ТЛС

39



Работа по высокоскоростной цифровой ТЛС

40



Реализация рассредоточенных устройств КП

41



Организация резервирования устройств ПУ и КП

44



Реализация устройства КП в двух и более кожухах КП-микро

49



Реализация устройства ПУ в двух и более кожухах КП-микро

50



Реализация устройств КП с цепочечными (транзитными) ТЛС

52



Концепция сопряжения ИУТК «Гранит-микро» с ведомственной сетью, предлагаемая СНПП “Промэкс”

52



Приложения







1. Информационный материал по проектированию и применению информационно-управляющего телемеханического комплекса «Гранит-микро» (товарный знак МИКРОГРАНИТ), редакция 5, 2004 г.

2. Концепция построения и реализация АСКУЭ на компонентах информационно-управляющего телемеханического комплекса «Гранит-микро» торговой марки МИКРОГРАНИТ, СНПП «Промэкс», Житомир, 2005 г.

3. Концепция построения и реализация АСУ ТП объектов энергетики на компонентах информационно-управляющего телемеханического комплекса «Гранит-микро» торговой марки МИКРОГРАНИТ, СНПП «Промэкс», Житомир, 2004 г.

4. Руководства по применению функциональных модулей ИУТК «Гранит-микро»

5. Руководство по применению программного обеспечения SCADA ОИК «Гранит-микро» информационно-управляющих телемеханических комплексов ИУТК «Гранит-микро» торговой марки МИКРОГРАНИТ. Часть первая. Принципы организации ОИК «Гранит-микро», выполняемые функции при обработке, отображении, регистрации различных видов информации. Редакция 1, 2004 г.

6. Руководство по применению программного обеспечения SCADA ОИК «Гранит-микро» информационно-управляющих телемеханических комплексов ИУТК «Гранит-микро» торговой марки МИКРОГРАНИТ. Часть вторая. Описание информационной модели объекта. Редакция 1, 2004 г.

7. Руководство по применению программного обеспечения SCADA ОИК «Гранит-микро» информационно-управляющих телемеханических комплексов ИУТК «Гранит-микро» торговой марки МИКРОГРАНИТ. Часть третья. Работа с пакетом про грамм. Редакция 1, 2004г.







Введение

При создании ИУТК «Гранит-микро» проанализированы основные параметры более 35 изделий – аналогов ведущих фирм – АBB, Siemens, PEP, Landis@Gyr, Motorola, Octagon Systems, Allen Breadly, ОАО «ЦННИКА», ЗАО «Системы телемеханики и автоматизации – Систел - А», ЗАО «Системы связи и телемеханики», ЗАО НПП «Радиотелеком», ОАО «Юг-Система плюс», ЗАО «РТСофт», компании ДЕП, ООО НТЦ «ГОСАН» и др. Выработаны, апробированы в десятках публикаций новые технические решения, которые позволяют ИУТК «Гранит-микро» успешно конкурировать с изделиями ведущих фирм.

^ С декабря 2003 г. изделия ИУТК «Гранит-микро» защищены российской торговой маркой «МИКРОГРАНИТ».

В 2004 г. изделиям ИУТК «Гранит-микро» на всеукраинском конкурсе присвоен диплом «Высшая проба» в номинации «Приборостроение».

Уровень ИУТК «Гранит-микро» характеризуют:

1.Экспозиция ИУТК «Гранит-микро» на выставке «Год Украины в России».

2.Приказ РАО ЕЭС России, которым разрешается использовать на объектах электроэнергетики России комплекс телемеханики «Гранит-микро» (в перечне предприятий СНПП «Промэкс» - единственный производитель Украины).

3. Диплом Международной выставки «Энергосвязь, средства связи в энергетике».

4. Диплом 2 степени в номинации «Автоматизированные системы учета энергоресурсов» VІІ Международной специализированной выставки «Уралэнерго-2001»..

5. Диплом 3-ей международной специализированной выставки «Энергетика, энергоресурсосбережение, экология».

6. Диплом Международной выставки «Уралэнерго» - 2004 г.

7. Диплом Международной выставки «Энергосвязь-2002» за разработку и внедрение современных цифровых технологий в системах управления ЕЭС России.

8. Диплом С.-Петербургской выставки «Энергетика», 2005 г.

9. Доклад на втором специализированном семинаре – выставке «Современные средства телемеханики, организация рабочих мест и щитов управления», Москва 2001г.

10. Доклад на третьем специализированном семинаре – выставке «Современные средства телемеханики, организация рабочих мест и щитов управления», Москва 2002г.

11.Доклад на четвертом специализированном семинаре – выставке «Современные средства телемеханики, организация рабочих мест и щитов управления», Москва 2003г.

12.Доклад на пятом специализированном семинаре – выставке «Современные средства телемеханики, организация рабочих мест и щитов управления», Москва 2004г.

13.Доклад на шестом специализированном семинаре – выставке «Современные средства телемеханики, организация рабочих мест и щитов управления», Москва 2005г.

14. Монография «Анализ состояния производства, принципов построения и тенденций развития информационно - управляющих комплексов для АСУ распределенных энергообъектов и производств», Москва, 2002 г. (д.т.н., профессор Е.М. Портнов).

15. Более 70 патентов Украины и России на изобретения, в том числе 20 патентов на устройства ИУТК «Гранит-микро».

В разработке ИИУТК «Гранит-микро» принимали участие:

-Портнов Михаил Львович, научный руководитель СНПП «Промэкс», научный руководитель ОАО «Промавтоматика» (г. Житомир), научный руководитель официального представительства СНПП «Промэкс» и ОАО «Промавтоматика» в Москве – Выставочно-торгового дома «Гранит-микро», к.т.н., доцент, чл.-кор. ИА Украины, автор более 70 патентов и 120 научных трудов,

-Портнов Евгений Михайлович, доктор технических наук, профессор Московского института (технического университета) электронной техники, автор более 20 патентов и 50 научных трудов, руководитель работ по теоретическому обоснованию структур и системных решений,

-Голько Валерий Зигмундович, руководитель разработки схемотехнических решений ИУТК «Гранит-микро», автор 10 научных работ,

-Остринский Евгений Александрович, магистр, руководитель разработки подсистем АСКУЭ и РАИ, автор 12 научных работ,

-Ищенко Александр Сергеевич, аспирант, руководитель разработки сетевого и прикладного программного обеспечения, автор 5 научных работ,

-Калитовская Лариса Алексеевна, руководитель разработки SCADA ОИК «Гранит-микро»,

-Перегуда Евгений Викторович, руководитель разработки систем электропитания ИИУК «Гранит-микро»,

-Портнова Нина Григорьевна, автор 11 патентов, руководитель разработки подсистемы сервисного обеспечения для проведения испытаний системы,

-Самчик Анна Викторовна, аспирант, разработчик модуля прямых измерений,

-Костюков Александр Георгиевич, конструкторское выполнение компонентов

ИИУК «Гранит-микро»,

-Мокрицкий Павел Георгиевич, разработка подсистемы сопряжения с диспетчерским щитом,

-Кондратюк Анна Анатольевна, разработка печатных плат компонентов ИИУК «Гранит-микро»,

-Андриенко Татьяна Васильевна, директор СНПП «Промэкс», организация разработки, изготовления и введения в работу ИИУК «Гранит-микро».


^ 1. Сопряжение устройств контролируемых пунктов (КП) с устройствами пункта управления (ПУ) или центральной приемо-передающей станцией (ЦППС).

Для сопряжения устройств ИУТК используется канал связи – совокупность средств, обеспечивающих проведение информационных обменов между двумя территориально разнесенными пунктами – пунктами обмена информацией (ПОИ). Информационные обмены могут проводиться между пунктами управления (ПУ) или центральными приемо– передающими станциями (ЦППС) и контролируемыми пунктами (КП), двумя КП, двумя ПУ (ЦППС).

Совокупность средств, составляющих канал связи, включает среду, по которой проводятся информационные обмены ПОИ, а также аппаратные и программные модули, обеспечивающие формирование сообщений для информационного обмена.

Среда проведения информационных обменов называется линией связи. ^ Многоканальная линия связи используется для организации нескольких каналов связи. Наиболее характерной многоканальной линией связи является оптическое волокно.

^ Телемеханическая линия связи (ТЛС) – сочетание аппаратных и программных средств и среды проведения информационных обменов территориально разнесенных ПОИ.

В ИУТК «Гранит-микро» возможно использование разных типов ТЛС и их конфигураций.

1.1.Типы ТЛС:

-выделенная (физическая) линия связи – пара проводов в специально проложенном или общем (например, городском телефонном) кабеле,

-уплотненная ВЧ сигналами линия связи. Организуется по линиям электропередачи и другим средам,

-аналоговая радио линия связи. Организуется с помощью стандартных или специализированных радиостанций,

-цифровая радио линия связи. Организуется цифровыми модемами, совмещенными с радиопередающим и радиоприемным узлами,

-цифровая радио линия связи, организованная средствами мобильной связи в GSM формате,

-вариант радио ТЛС, организованный средствами мобильной связи с использованием процедур GPRS,

-цифровая линия связи, использующая вычислительную сеть Ethernet,

-цифровая линия связи, организованная по оптическому волокну.

1.2.Конфигурации ТЛС:

-радиальная,

-магистральная,

-транзитная,

-произвольная,

-одноуровневая,

-многоуровневая,

-с элементами сети.

Ниже приведены примеры конфигураций линий связи

1.2.1.Радиальные линии связи




В радиальной конфигурации число ТЛС (радиусов) равно числу КП. Такая конфигурация обеспечивает максимальную живучесть ИУТК в целом, так как невозможность реализации информационных обменов по одному радиусу не влияет на работоспособность остальных. К положительным характеристикам радиальных линий связи следует отнести возможность установки разной скорости передачи по радиусам и высокую пропускную способность - суммарное число информационных обменов в единицу времени, ПУ со всеми КП ИУТК, так как информационные обмены по разным радиусам могут проводиться в пересекающиеся моменты времени.

При оптимальном построении устройства ПУ (ЦППС) суммарная пропускная способность ИУТК равна сумме пропускной способности всех радиусов. Оптимальным назовем такое построение устройства ПУ (ЦППС), при котором не образуется очередь информационных сообщений от любого КП независимо от реальной интенсивности потока заявок на передачу.

Алгоритмические, схемные и системные решения ИИУК «Гранит-микро» позволяют максимально использовать реальную пропускную способность линий связи.

1.2.2. Магистральная линия связи.

По одной магистральной линии связи проводятся информационные обмены ПУ (ЦППС) с несколькими или всеми КП. Очевидно, что при проведении информационных обменов части КП с ПУ (ЦППС) по одной магистральной линии связи, сопряжение ПУ с другими КП одного ИУТК проводятся по другим видам линий связи или другой магистральной линии связи. В одном ИИУК (ИУТК) «Гранит-микро» может использоваться произвольное число магистральных линий связи.

Устройства КП присоединяются к магистральной линии связи «квазипараллельно». Термин «квазипараллельно» используется потому, что физически параллельное подключение КП к магистральной линии реализуется только для проводных ТЛС, а в общем случае физического параллельного присоединения может и не быть. Например, при использовании одного радиоканала связи (одного выделенного диапазона частот с заданной девиацией относительно среднего значения) для проведения информационных обменов ПУ (ЦППС) с несколькими КП такой канал по определению является магистральным.

Структура магистральной ТЛС приведена ниже





В магистральной ТЛС в каждый момент времени информационные обмены проводятся только между ПУ (ЦППС) и одним КП. Очевидно, что производительность и живучесть ИУТК при использовании ТЛС ниже, чем при радиальных ТЛС.

Важная особенность ИУТК «Гранит-микро» - использование идентичных протоколов передачи данных по радиальным и магистральным линиям связи, что позволяет изменять структуру связей ПУ с КП после введения системы в работу.

1.2.3.Транзитные (цепочечные) линии связи.

Транзитные линии создаются, если нет возможности создать прямую линию связи между ПУ (ЦППС) и КП. Транзитные ТЛС образуются и при рассредоточенном размещении аппаратуры одного КП. В последнем случае части одного КП присоединяются к общему для них концентратору, который, в свою очередь, подключается к устройству ПУ или другому КП. Один из вариантов транзитной ТЛС показан ниже. При использовании транзитной линии связи устройство КП, к которому подключается другой КП (или его часть), является ретранслятором при проведении информационных обменов указанного КП и ПУ. Так, в приведенном примере КП1 является ретранслятором для КП2, КПi, КПn, а КПi – ретранслятором для КПn. По линии связи, соединяющей КП1 с ПУ (ЦППС), проводятся информационные обмены со всеми показанными на рисунке КП. Очевидно, что производительность указанной линии связи должна быть достаточной для того, чтобы в КП1 и промежуточных пунктах – ретрансляторах не создавалась очередь из информационных сообщений, принятых от смежного КП, но не переданных по цепочке в направлении ПУ.

В реальных условиях возможны варианты комплексов, в которых производительность линии связи в направлении от КП в сторону ПУ меньше, чем производительность линии связи от КП к смежному КП транзитной цепи. В указанном случае производительность линии связи между КП необходимо искусственно занижать для исключения информационных «заторов». Для этого, например, скорость передачи информации по линии связи между КП устанавливают меньшей, чем по линии связи от КП - ретранслятора в направлении ПУ (ЦППС).





В ИУТК «Гранит-микро» допускается использование любой конфигурации транзитных линий связи.

1.2.4. Линии связи произвольной конфигурации

Данная конфигурация образуется сочетанием двух и более типов базовых ТЛС.



Радиальные ТЛС

В ИУТК «Гранит-микро» допускается применения линий связи произвольной конфигурации. При использовании разветвленных структур линий связи рекомендуем воспользоваться консультативными услугами СНПП «Промэкс» или ВТД «Гранит-микро».

1.2.5. Все рассмотренные типы ТЛС используются для проведения информационных обменов КП с одним ПУ (ЦППС). Структуры ИУТК и ТЛС с одним ПУ (ЦППС) называются одноуровневыми.


1.2.6.Многоуровневая структура ТЛС и ИУТК «Гранит-микро»

Многоуровневые ИУТК (в отличие от нескольких одноуровневых) реализуют информационные обмены между ПУ. Если ранг устройств ПУ многоуровневых ИУТК разный, структура ИУТК является иерархической. Отметим, что административный ранг ПУ ИУТК не сказывается на проведении информационных обменов с КП и другими ПУ (ЦППС).

Производительность ТЛС между ПУ должна определяться требуемым объемом межуровневых информационных обменов.

Ниже приводится пример двухуровневого ИУТК и ТЛС. Отметим, что нумерация

КП в разных уровнях может быть сквозной или индивидуальной.





В одно- и многоуровневых ИУТК КП проводят информационные обмены только с ПУ «своего» уровня, а межуровневые информационные обмены проводят ПУ (ЦППС).

Алгоритмические, схемные и системные решения ИУТК «Гранит-микро» позволяют использовать межуровневые информационные обмены.

1.2.7. ТЛС и ИУТК с элементами сетевой конфигурации.

Для ИУТК с сетевой конфигурацией характерны информационные обмены одного, нескольких или всех КП с ПУ более чем одного уровня. «Глобальная» сетевая конфигурация, обеспечивающая проведение информационных обменов каждого пункта с любым другим, в ИУТК не находят практического применения (в связи со сложностью организации ТЛС). Пример построения системы на ИУТК «Гранит-микро» с элементами сетевой конфигурации линий связи показан ниже (линии связи, организующие элементы сети, выделены жирными линиями)





Так как информация от любого КП одного уровня в ИУТК с элементами сетевой конфигурации может быть направлена в ПУ другого уровня, нумерация КП в ИУТК должна быть сквозной. Альтернативой такому методу адресации является использование в информационном сообщении двух координат адреса – отправителя и получателя информации.

В ИУТК «Гранит-микро» для унификации адресации для всех конфигураций линий связи используется одна координата адреса.

Очевидно также, что для всех конфигураций линий связи в ИУТК должен использоваться стандартный протокол, который (с учетом возможного применения структур с элементами сети) обеспечит реализацию автоматической маршрутизации сообщений.

При необходимости реализации сетевых конфигураций рекомендуем воспользоваться консультативными услугами СНПП «Промэкс» или ВТД «Гранит-микро».


^ 2. Организация информационных обменов в ИУТК «Гранит-микро».

2.1. Метод формирования передаваемых в ТЛС сигналов

В ИУТК «Гранит-микро» используется временное разделение передаваемых в ТЛС сигналов.

При временном разделении сигналов в приемнике сообщения необходимо:

- зафиксировать начало передачи,

- поддержать синхронность приема отдельных сигналов сообщения,

- определить момент завершения приема всех сигналов.

2.2. Формирование беспаузного и паузного кодов

Для передачи единичного двоичного сигнала – бита («1» или «0») выделяется один такт. Время одного такта соответствует одному периоду частоты (1/fT) задающего генератора тактовых импульсов. Если передаваемый сигнал «1» или «0» занимает все время такта (его длительность равна периоду сигнала генератора тактовых импульсов), между двумя смежными сигналами нет разделительной паузы. Такой код – набор передаваемых без пауз двоичных сигналов, называется беспаузным. В некоторых вариантах систем находят применения и так называемые паузные коды.

В паузном коде сигнал «1» или «0» занимают не всю длительность периода генератора.

Ниже приводится пример временных диаграмм формирования беспаузного (для ИУТК «Гранит-микро») и паузного кодов для случая, когда в паузном коде активный сигнал равен половине длительности такта.





2.3. Информационные и энергетические особенности беспаузного кода

Очевидно, что при заданной амплитуде энергия беспаузного импульсного сигнала максимальна. Следовательно, максимальна и его «потенциальная помехоустойчивость», которая (по теореме Котельникова) определяется соотношением энергий рабочего сигнала и помехи.

^ Указанное преимущество является определяющим при выборе типа кода в ИУТК «Гранит-микро».

Однако при использовании беспаузного кода исчезает «импульсный признак» - длительность непрерывно передаваемого в ТЛС импульса. Она оказывается нефиксированной и зависит от комбинации сигналов «1» и «0». В паузном коде при любой комбинации передаваемых сигналов длительность непрерывно передаваемого в ТЛС импульса равна части (половине – для приведенного примера) периода сигнала генератора тактовых импульсов.

Указанная особенность паузного кода облегчает передачу и прием сигнала – признака начала передачи сообщения. Для этого достаточно в начале передаваемого сообщения сформировать импульс, длительность которого существенно (например, в три раза) больше информационного, а в приемнике с помощью временного селектора выделить удлиненный импульс (синхроимпульс).

При беспаузном кодировании использовать удлиненный импульс для фиксации начала информационного сообщения невозможно, для этой цели применяют специальные коды. В протоколе HDLC (в ИУТК «Гранит-микро») в качестве специального кода, получившего название «открывающего флага», используют байт со структурой 01111110. Ниже приводятся временные диаграммы, поясняющие формирование признака начала сообщения для беспаузного и паузного кодов





Как видно, для формирования и передачи синхронизирующего импульса – маркера


начала рабочего цикла, при паузном кодировании достаточно два такта, а при использовании протокола HDLC (при беспаузном кодировании) – восемь тактов. К тому же использование беспаузного кода требует применения дополнительных процедур для того, чтобы сделать «беспаузный» маркер начала рабочего цикла «прозрачным»

2.4. Формирование маркера начала передачи информации

«Прозрачность» ОФ, т.е. запрет образования кода 01111110 в пределах передаваемого сообщения, обеспечивается вставкой сигнала «0» после передачи подряд пяти сигналов «1» (процедура вставки бита «0» вводится после передачи «открывающего флага», который в приводимом примере выделен жирными линиями). Включенные дополнительные биты – вставки обведены рамкой.




01111110 011011111 0011111 11111 0001111011111 01….


Для восстановления реально переданного сообщения в приемнике проводится процедура изъятия бита – вставки. Сигнал «0», принятый после пяти подряд сигналов «1», идентифицируется как вставка, в блок памяти принятого сообщения он не вводится, число тактов приема данных не изменяет.

Таким образом, использованием «прозрачного открывающего флага» решается первое из названных условий реализации передачи сообщений методом временного разделения сигналов – определение начала сообщения.

2.5.Обеспечение синхронности передачи и приема сигналов

Для обеспечения синхронности передачи и приема всех сигналов сообщения необходимо выполнить еще два условия: установить одинаковые частоты генераторов тактовых импульсов передатчика и приемника сообщения и поддерживать оптимальное соотношение начальных фаз указанных сигналов.

Первое условие выполняется достаточно просто использованием для образования тактовых импульсов задающего генератора на основе кварцевого резонатора.

Для выполнения второго условия обычно используется один из двух возможных методов – ударной или инерционной синхронизации. Оба метода основаны на том, что фронты передаваемых в ТЛС импульсов совпадают с фронтом сигнала генератора тактовых импульсов, который условно назовем нулевой фазой тактового импульса. При ударной синхронизации нулевая фаза тактового импульса устанавливается фронтом каждого принятого сигнала. Такой метод применяется, например, в com port ПЭВМ при работе по интерфейсу RS-232.

Однако метод «ударной» синхронизации может использоваться только при малом уровне помех, т.е. при малой вероятности образования ложных фронтов, которые могут появиться при попадании помехи в паузу между импульсными сигналами сообщения или при расчленении одного импульсного сигнала помехой. Поэтому ударная синхронизация используется при небольших расстояниях между приемником и передатчиком сообщений и при обеспечении «комфортных» условий при прохождении сигналов по ТЛС.

Значительно большую помехоустойчивость для установки оптимального соотношения фаз тактовых импульсов передатчика и приемника обеспечивает метод инерционной синхронизации. Метод применяется во всех версиях ИУТК «Гранит» и иллюстрируется приведенными ниже временными диаграммами.




На диаграмме «а» показаны сигналы генератора тактовых импульсов передатчика, с помощью которых формируются все информационные сигналы сообщения, в том числе и маркер начала (МН) – «открывающий флаг».

На диаграмме «б» показан сформированный код МН – 01111110. Уже указывалось, что для его расшифровки невозможно использовать «временной» признак. При паузном кодировании определять принимаемые сигналы можно методом интегрирования, сравнивая с «образцом» зафиксированную интегральную длительность (энергию) каждого импульсного сигнала. В беспаузном коде длина непрерывно передаваемого импульса не фиксирована. Для расшифровки (декодирования) принимаемых сигналов приходится использовать альтернативный и значительно более сложный метод стробирования. При использовании метода стробирования фиксируется мгновенное значение принимаемого сигнала в момент образования «строба» Очевидно, что для оптимального приема каждого единичного сигнала (бита) момент его фиксации (формирования «строба») должен совмещаться с серединой интервала его передачи, т.е. с серединой периода пер.

2.6. Реализация инерционной синхронизации

Однако на удаленной от передатчика стороне приема информации нет «копии» сигнала пер., т.е. его необходимо восстановить, пользуясь принимаемым сообщением. Для восстановления тактового сигнала пер можно использовать только переходы принимаемого сигнала из «1» в «0» и обратно. В реальных ТЛС искажение фронта и спада сигнала может быть различным, поэтому для восстановления пер используют только один из двух перепадов уровня принимаемых сигналов. Как показано на диаграммах «в» и «г», тактовые сигналы приемника пр могут опережать сигналы пер или отставать от них (важно подчеркнуть, что абсолютно точно установить одинаковые значения пер и пр невозможно даже при использовании кварцевых резонаторов, поэтому фазовый сдвиг между ними увеличивается со временем). Если указанные сдвиги превышают порог – половину периода пер, принимаемая информация искажается. Сигналы пр необходимо корректировать – синхронизировать относительно сигналов пер. с тем, чтобы получить на стороне приемника тактовые сигналы, показанные на диаграмме «д».

При «инерционной» синхронизации момент фиксации приемником каждого рабочего фронта принятого сигнала, который (при отсутствии искажений сигналов помехами) соответствует начальной (нулевой) фазе сигнала пер, сравнивается с текущей фазой сигнала пр . Если фронт пр опережает фронт пер, фаза пр корректируется так, чтобы очередной сигнал был «немного» задержан; в противном случае (т.е. при отставании пр от пер ) очередной сигнал пр «немного» ускоряется. Величина коррекции, равная части периода пр , называется коэффициентом инерционности. Обычно коэффициент инерционности Ки = 1/16 …1/32. Очевидно, чем меньше Ки, тем более устойчив прием информации, так как сигнал помехи меньше смещает момент стробирования. Но нельзя забывать о том, что для установки оптимального момента стробирования необходимо затратить много «фронтов» принимаемого сигнала. При двунаправленной коррекции – в сторону уменьшения отставания или опережения, максимальное число «фронтов» для коррекции максимального фазового сдвига равно 0,5/ Ки (8 или 16 при Ки, равном 1/16 и 1/32, соответственно).

При использовании паузного кодирования удлиненный синхроимпульс может быть выделен временным селектором в любой момент времени, т.е. без проведения дополнительных процедур. Так как при беспаузном кодировании признаком начала передачи является специальный код 01111110, становится понятным, что без предварительной синхронизации генераторов приемника и передатчика адекватно принять МН и все информационное сообщение практически невозможно. Выход очевиден – использовать для синхронизации время до приема МН, т.е. сделать паузы между рабочими циклами активными. Наиболее «выгодно» передавать в паузах между рабочими циклами сигналы, позволяющие наиболее часто корректировать фазу пр, т.е. содержащие наибольшее число «фронтов». Такие сигналы получили название меандр (М) и представляют собой чередующиеся сигналы «1» и «0» с частотой следования 0,5пер Принцип формирования «меандра» приведен ниже.





На диаграмме «а» показаны сигналы пер , которые используются для формирования «меандра» («б»). Для радиального канала связи «меандры» можно передавать поочередно от КП и ПУ («б» - «в»), синхронизируя ими генератор тактовых импульсов, соответственно, устройств ПУ и КП. Однако при магистральном канале связи периодическая передача «меандра» от КП невозможна, так как несколько или все КП используют общий канал связи. Для магистральных каналов связи «меандр» должен пристыковываться к информационному сообщению («г»). Для унификации структуры рабочего цикла в ИУТК «Гранит-микро» признано целесообразным «состыковать» меандр с информационным сообщением при использовании любого типа ТЛС.

Уже указывалось, что число сигналов «1» и «0» в меандре определяется выбранным коэффициентом инерционности.

2.7. Особенности формирования «меандров» в ИУТК «Гранит-микро»

При поочередной передаче меандров от ПУ и КП возможно наложение их передачи и взаимное подавление передаваемых сигналов при произвольных моментах включения в работу устройств ПУ и КП. В ИУТК «Гранит-микро» устройства, между которыми проводится информационный обмен, по принципу формирования и передачи меандра разделяются на «ведущее» и «ведомое». «Ведущее» устройство передает меандры с заданным числом сигналов «1» и «0» циклически, причем после завершения одного цикла устанавливается пауза, длительность которой равна времени передачи меандра.

«Ведомое» устройство фиксирует поступление меандра от «ведущего» устройства, последующее прекращение передачи меандра, после чего «ведомое» устройство формирует и передает меандр в ТЛС. Таким образом, «ведущее» устройство передает меандр независимо от передачи меандра от «ведомого», а передача меандра «ведомым» устройством ставится в зависимость от приема меандра от «ведущего». Описанный алгоритм формирования и передачи меандров обеспечивает автоматическую синхронизацию устройств ПУ и КП независимо от моментов включения и отключения любого из них.

Передача меандра автоматически заменяется передачей информационного сообщения, если к моменту начала очередного цикла передачи меандра в устройстве (ПУ или КП) зафиксирован запрос на передачу сообщения. Принцип передачи меандра и переход к передаче информации иллюстрируется ниже



Меандр

пауза

информация

меандр

пауза

меандр

пауза

Пауза

меандр

пауза

пауза

информация

пауза

меандр

«ведущее»

устройство

«ведомое» устройство

Видно, что передача информационного сообщения начинается в момент, когда (при отсутствии необходимости в передаче информационного сообщения) устройству разрешена передача меандра. Если запрос на передачу информации зафиксирован с любым временным сдвигом относительно момента начала передачи меандра этим устройством, передача информации задерживается до начала очередного цикла передачи меандра данным устройством.

Функция «ведущего» может быть передана как устройству ПУ, так и устройству КП. В традиционных устройствах телемеханики объем информации, передаваемой от КП в ПУ, значительно превышает объем информации, передаваемой от ПУ в КП. Поэтому чаще всего функция «ведущего» передается устройству КП. В таком варианте данные от КП будут передаваться даже при отсутствии или неработоспособности ТЛС в направлении от ПУ к КП. Если работоспособность «прямого» (от КП в ПУ) и «обратного» (от ПУ в КП) канала связи одинакова (например, при использовании для информационных обменов физической пары проводов), целесообразно функции «ведущего» передать устройству ПУ. В таком варианте упрощается оперативная диагностика работоспособности канала связи со стороны устройства ПУ - отсутствие в течение оговоренного времени поступления меандров от КП в ответ на циклическую их передачу от ПУ идентифицируется как неисправность ТЛС (или устройства КП).

2.8. Определение работоспособности канала связи

Для оперативного определения исправности ТЛС (устройства КП) при передаче функции «ведущего» устройству КП в ИУТК «Гранит-микро» используется периодическая передача от ПУ специального диагностического сообщения, в ответ на которое от КП должно поступить оговоренное ответное сообщение. Такой алгоритм сложнее, чем обычно используемый при контроле работоспособности с помощью меандров, но позволяет более глубоко проверить работоспособность не только ТЛС, но и устройства КП.

Для определения окончания приема информационного сообщения протокол HDLC предусматривает передачу «закрывающего флага», структура которого соответствует «открывающему флагу».

Как отмечалось, для оптимизации процедуры инерционной синхронизации в ИУТК «Гранит-микро» используются паузы между рабочими циклами, которые заполняются меандрами.

В базовом протоколе HDLC, в отличие от варианта, используемого в ИУТК «Гранит-микро», паузы между рабочими циклами заполняются «флагами». Первый байт, отличный от «флага», следующий за байтами «флаг», идентифицируется как «открывающий» ( начало передачи сообщения). Байт «флаг», следующий за байтами, отличными от «флага», считается «закрывающим» (окончание передачи сообщения). При таком использовании пауз между рабочими циклами искажение помехами любого байта «флаг» приводит к тому, что бракуется только одно сообщение.

Действительно, если искажается «открывающий флаг», следующий за предыдущим байтом «флага» искаженный «флаг» будет воспринят как первый байт сообщения. По следующему за сообщением «закрывающему флагу» принятое сообщение направляется для анализа в приемник. Так как компоненты рабочего цикла оказываются искаженными, приемник не направляет принятое сообщение в подсистему обработки информации. Аналогично, если исказится «закрывающий» флаг, он воспримется как последний байт сообщения, а в качестве «закрывающего» будет воспринят следующий байт «флаг». В результате и таким образом искаженное сообщение не будет направлено на обработку. При искажении любого «флага» в паузе между передачей сообщений, образуется «сообщение», состоящее из одного байта, которое также не поступит в подсистему обработки.

Искажение «открывающего» или «закрывающего» флага в ИУТК «Гранит-микро» приводит к изменению функции «флагов». В качестве «открывающего» воспринимается «закрывающий» флаг (при искажении «открывающего» флага), а в качестве «закрывающего» флага - «открывающий» флаг следующего сообщения. В результате искаженное сообщение не будет направлено в подсистему обработки. Однако при большой интенсивности потока передач сообщений однократное искажение «флага» может привести к искажению нескольких смежных сообщений.

Метод заполнения пауз между рабочими циклами меандрами, а не «флагами» уменьшает время, затрачиваемое на синхронизацию ПУ и КП не менее чем в четыре раза. Следовательно, при таком методе увеличивается реальное быстродействие системы. К тому же поочередная (с разделением во времени) передача меандров (и информационных сообщений) от ПУ и КП позволяет исключить необходимость создания дуплексного канала связи и обеспечить проведение информационных обменов в ИУТК «Гранит-микро» по более простому полудуплексному каналу связи.

Чтобы в ИУТК «Гранит-микро» минимизировать искажение нескольких смежных сообщений при однократном искажении «флага», до начала передачи сообщения в канал связи передается два «открывающих» флага, а завершает передачу сообщения – один «закрывающий» флаг. Введенное отличие признаков начала и окончания сообщения позволяет локализовать последствия искажения любого «флага» в одном сообщении.

rukovodstvo-po-proverke-i-ocenke-sostoyaniya-vooruzheniya-i-voennoj-tehniki-obshevojskovogo-naznacheniya-v-vooruzhennih-silah-rossijskoj-federacii.html
rukovodstvo-po-rabote-s-partnerskimi-modulyami-i-resheniyami-soderzhanie.html
rukovodstvo-po-raschetu-teplopotrebleniya-ekspluatiruemih-zhilih-zdanij-abok-spravochnoe-posobie-1-2004-stranica-19.html
rukovodstvo-po-raschetu-teplopotrebleniya-ekspluatiruemih-zhilih-zdanij-abok-spravochnoe-posobie-1-2004-stranica-3.html
rukovodstvo-po-raschetu-teplopotrebleniya-ekspluatiruemih-zhilih-zdanij-abok-spravochnoe-posobie-1-2004-stranica-7.html
rukovodstvo-po-rasshirennoj-reanimacii-chast-i-o-yu-kuznecova-k-m-lebedinskij-sestrinskoe-delo.html
  • writing.bystrickaya.ru/luna-estestvennij-sputnik-zemli-chast-3.html
  • lecture.bystrickaya.ru/8724-ekologicheskie-osnovi-zhiznedeyatelnosti-naseleniya-metodicheskie-ukazaniya-6-obshestvennie-nauki-21-00-obshestvennie.html
  • school.bystrickaya.ru/issledovanie-obraza-invalida-v-soznanii-zhenshin-po-metodike-sochi.html
  • credit.bystrickaya.ru/otchet-o-pribilyah-i-ubitkah-a-h-gilemyanov-glavnij-buhgalter.html
  • grade.bystrickaya.ru/o-provedenii-zaprosa-kotirovok-na-postavku-molochnih-produktov-pitaniya-dlya-nuzhd-mdou-skazka.html
  • uchitel.bystrickaya.ru/razyasneniya-razrabotchikam-osnovnih-professionalnih-obrazovatelnih-programm-o-poryadke-realizacii-federalnih-gosudarstvennih-obrazovatelnih-standartov-nachalnogo-i-srednego-professionalnogo-obrazovaniya.html
  • grade.bystrickaya.ru/metodicheskoe-posobie-korrekcionno-razvivayushego-obucheniya-rechi-detej-v-usloviyah-logopedicheskogo-punkta-stranica-4.html
  • paragraph.bystrickaya.ru/kommentarii-musulmanskogo-prava-stranica-51.html
  • notebook.bystrickaya.ru/informacionnij-byulleten-profsoyuza-688-2008-g.html
  • urok.bystrickaya.ru/pravovoe-regulirovanie-mezhdunarodnogo-olimpijskogo-sporta-chastnopravovoj-aspekt-12-00-03-grazhdanskoe-pravo-predprinimatelskoe-pravo-semejnoe-pravo-mezhdunarodnoe-chastnoe-pravo.html
  • literatura.bystrickaya.ru/rol-alyuminij-i-borsoderzhashih-soedinenij-v-formirovanii-nanorazmernih-katalizatorov-gidrirovaniya-na-osnove-kompleksov-palladiya.html
  • textbook.bystrickaya.ru/k-chemu-lyudi-stremyatsya-v-zhizni.html
  • textbook.bystrickaya.ru/izbiratelnaya-komissiya-evrejskoj-avtonomnoj-oblasti-postanovlenie-stranica-6.html
  • exchangerate.bystrickaya.ru/kriminalisticheskoe-issledovanie-sledov-nog-cheloveka-na-meste-proisshestviya-chast-2.html
  • credit.bystrickaya.ru/osnovnie-cherti-kulturi-renessansa-i-gumanizma-5.html
  • learn.bystrickaya.ru/fizkulturno-ozdorovitelnaya-rabota-v-dou-sheobrazovatelnaya-programma-doshkolnogo-obrazovaniya-municipalnogo-doshkolnogo.html
  • apprentice.bystrickaya.ru/zhiznennij-put-chichikova-po-poeme-gogolya-mertvie-dushi.html
  • pisat.bystrickaya.ru/tema-solnechnaya-sistema.html
  • crib.bystrickaya.ru/i-strategiya-modernizacii-rossijskogo-shkolnogo-obrazovaniya-strategiya-modernizacii.html
  • learn.bystrickaya.ru/glava-2-mir-na-rubezhe-xix-xx-vv-vsemirnaya-istoriya-xx-vek-uchebnik-dlya-shkolnikov-1011-klassov.html
  • lektsiya.bystrickaya.ru/prilozhenie-44-pravila-organizacii-tehnicheskogo-obsluzhivaniya-i-remonta-oborudovaniya-zdanij-i-sooruzhenij-elektrostancij.html
  • tasks.bystrickaya.ru/119034-moskva-kropotkinskij-per-13.html
  • zadachi.bystrickaya.ru/metodicheskoe-soprovozhdenie-rabot-po-veden-iyu-monitoringa-sostoyaniya-nedr.html
  • tetrad.bystrickaya.ru/uchebno-metodicheskij-kompleks-uchebnoj-disciplini-logistika-080507-65-menedzhment-organizacii-specialitet.html
  • predmet.bystrickaya.ru/sho-take-surzhik-oznaka-nedosvdchenost-chi-ditya-nedbalost.html
  • zanyatie.bystrickaya.ru/upravlenie-razvitiem-sportivno-ozdorovitelnogo-departamenta-v-gostinichnom-biznese.html
  • ucheba.bystrickaya.ru/prilozhenie-161k-razdelu-16-vremennih-norm-i-pravil-vremennie-normi-i-pravila-proektirovaniya-mnogofunkcionalnih.html
  • universitet.bystrickaya.ru/statya-55-kommentarij-k-pskovskoj-sudnoj-gramote.html
  • laboratornaya.bystrickaya.ru/programma-vstupitelnih-ispitanij-po-napravleniyu-podgotovki-nauchno-pedagogicheskih-kadrov-v-aspiranture-51-06-01-kulturologiya.html
  • university.bystrickaya.ru/finansi-i-kredit-osnovnaya-obrazovatelnaya-programma-visshego-professionalnogo-obrazovaniya-napravlenie-podgotovki-specialnost.html
  • write.bystrickaya.ru/glava-9-slastenin-v-a-i-dr-pedagogika-ucheb-posobie-dlya-stud-vissh-ped-ucheb-zavedenij-v-a-slastenin-i.html
  • lecture.bystrickaya.ru/aspirantka-me-ulyanova-sbornik-statej-posvyashen-nauchnim-i-metodicheskim-issledovaniyam-po-problemam-rossijskogo.html
  • literature.bystrickaya.ru/e-v-popova-gou-vpo-rossijskij-gosudarstvennij-professionalno-pedagogicheskij-universitet-stranica-16.html
  • essay.bystrickaya.ru/chast-tretya-iskusstvo-postigat-iskusstvo.html
  • kanikulyi.bystrickaya.ru/vyashenko-yul-egorova-ta-tezisi-dokladov-nauchno-prakticheskoj.html
  • © bystrickaya.ru
    Мобильный рефератник - для мобильных людей.